299 research outputs found

    LeMoMaF: Lensed Mock Map Facility

    Get PDF
    We present the Lensed Mock Map Facility (LeMoMaF), a tool designed to perform mock weak lensing measurements on numerically simulated chunks of the universe. Coupling N-body simulations to a semi-analytical model of galaxy formation, LeMoMaF can create realistic lensed images and mock catalogues of galaxies, at wavelengths ranging from the UV to the submm. To demonstrate the power of such a tool we compute predictions of the source-lens clustering effect on the convergence statistics, and quantify the impact of weak lensing on galaxy counts in two different filters. We find that the source-lens clustering effect skews the probability density function of the convergence towards low values, with an intensity which strongly depends on the redshift distribution of galaxies. On the other hand, the degree of enhancement or depletion in galaxy counts due to weak lensing is independent of the source-lens clustering effect. We discuss the impact on the two-points shear statistics to be measured by future missions like SNAP and LSST. The source-lens clustering effect would bias the estimation of sigma_8 from two point statistics by 2% -5%. We conclude that accurate photometric redshifts for individual galaxies are necessary in order to quantify and isolate the source-lens clustering effect.Comment: 14 pages, 11 figures, submitted to MNRA

    On the Convergence of the Milky Way and M31 Kinematics from Cosmological Simulations

    Get PDF
    The kinematics of the Milky Way (MW) and M31, the dominant galaxies in the Local Group (LG), can be used to estimate the LG total mass. New results on the M31 proper motion have recently been used to improve that estimate. Those results are based on kinematic priors that are sometimes guided and evaluated using cosmological N-body simulations. However, the kinematic properties of simulated LG analogues could be biased due to the effective power spectrum truncation induced by the small size of the parent simulation. Here we explore the dependence of LG kinematics on the simulation box size to argue that cosmological simulations need a box size on the order of 1 Gpc in order to claim convergence on the LG kinematic properties. Using a large enough simulation, we find M31 tangential and radial velocities relative to the MW to be in the range vtan=105−59+94v_{\mathrm {tan}}=105^{+94}_{-59} km/s and vrad=−108−81+68v_{\mathrm {rad}}=-108^{+68}_{-81} km/s, respectively. This study highlights that LG kinematics derived from N-body simulations have to be carefully interpreted taking into account the size of the parent simulation.Comment: 7 pages, 4 figures, Accepted for publication in Ap

    The abundance of Bullet-groups in LCDM

    Full text link
    We estimate the expected distribution of displacements between the two dominant dark matter (DM) peaks (DM-DM displacements) and between DM and gaseous baryon peak (DM-gas displacements) in dark matter halos with masses larger than 101310^{13} Msun/h. We use as a benchmark the observation of SL2S J08544-0121, which is the lowest mass system (1.0×10141.0\times 10^{14} Msun/h) observed so far featuring a bi-modal dark matter distribution with a dislocated gas component. We find that (50±10)(50 \pm 10)% of the dark matter halos with circular velocities in the range 300 km/s to 700 km/s (groups) show DM-DM displacements equal or larger than 186±30186 \pm 30 kpc/h as observed in SL2S J08544-0121. For dark matter halos with circular velocities larger than 700 km/s (clusters) this fraction rises to 70 ±\pm 10%. Using the same simulation we estimate the DM-gas displacements and find that 0.1 to 1.0% of the groups should present separations equal or larger than 87±1487\pm 14kpc/h corresponding to our observational benchmark; for clusters this fraction rises to (7 ±\pm 3)%, consistent with previous studies of dark matter to baryon separations. Considering both constraints on the DM-DM and DM-gas displacements we find that the number density of groups similar to SL2S J08544-0121 is ∌6.0×10−7\sim 6.0\times 10^{-7} Mpc−3^{-3}, three times larger than the estimated value for clusters. These results open up the possibility for a new statistical test of LCDM by looking for DM-gas displacements in low mass clusters and groups.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter

    The Coarse Geometry of Merger Trees in \Lambda CDM

    Full text link
    We introduce the contour process to describe the geometrical properties of merger trees. The contour process produces a one-dimensional object, the contour walk, which is a translation of the merger tree. We portray the contour walk through its length and action. The length is proportional to to the number of progenitors in the tree, and the action can be interpreted as a proxy of the mean length of a branch in a merger tree. We obtain the contour walk for merger trees extracted from the public database of the Millennium Run and also for merger trees constructed with a public Monte-Carlo code which implements a Markovian algorithm. The trees correspond to halos of final masses between 10^{11} h^{-1} M_sol and 10^{14} h^{-1} M_sol. We study how the length and action of the walks evolve with the mass of the final halo. In all the cases, except for the action measured from Markovian trees, we find a transitional scale around 3 \times 10^{12} h^{-1} M_sol. As a general trend the length and action measured from the Markovian trees show a large scatter in comparison with the case of the Millennium Run trees.Comment: 7 pages, 5 figures, submitted to MNRA

    Characterizing SL2S galaxy groups using the Einstein radius

    Full text link
    We analyzed the Einstein radius, ΞE\theta_E, in our sample of SL2S galaxy groups, and compared it with RAR_A (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensing assuming a Singular Isothermal Sphere profile (ΞE,I\theta_{E,I}), 2.- a strong lensing analytical method (ΞE,II\theta_{E,II}) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling (ΞE,III\theta_{E,III}) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, RAR_A was analyzed as a function of redshift zz to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between ΞE\theta_{E} and RAR_A, but with large scatter. We estimate ΞE,I\theta_{E,I} = (2.2 ±\pm 0.9) + (0.7 ±\pm 0.2)RAR_A, ΞE,II\theta_{E,II} = (0.4 ±\pm 1.5) + (1.1 ±\pm 0.4)RAR_A, and ΞE,III\theta_{E,III} = (0.4 ±\pm 1.5) + (0.9 ±\pm 0.3)RAR_A for each method respectively. We found a weak evidence of anti-correlation between RAR_A and zz, with LogRAR_A = (0.58±\pm0.06) - (0.04±\pm0.1)zz, suggesting a possible evolution of the Einstein radius with zz, as reported previously by other authors. Our results also show that RAR_A is correlated with L and N (more luminous and richer groups have greater RAR_A), and a possible correlation between RAR_A and the N/L ratio. Our analysis indicates that RAR_A is correlated with ΞE\theta_E in our sample, making RAR_A useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with zz.Comment: Accepted for publication in Astronomy & Astrophysics. Typos correcte

    Halo based reconstruction of the cosmic mass density field

    Full text link
    We present the implementation of a halo based method for the reconstruction of the cosmic mass density field. The method employs the mass density distribution of dark matter haloes and its environments computed from cosmological N-body simulations and convolves it with a halo catalog to reconstruct the dark matter density field determined by the distribution of haloes. We applied the method to the group catalog of Yang etal (2007) built from the SDSS Data Release 4. As result we obtain reconstructions of the cosmic mass density field that are independent on any explicit assumption of bias. We describe in detail the implementation of the method, present a detailed characterization of the reconstructed density field (mean mass density distribution, correlation function and counts in cells) and the results of the classification of large scale environments (filaments, voids, peaks and sheets) in our reconstruction. Applications of the method include morphological studies of the galaxy population on large scales and the realization of constrained simulations.Comment: Accepted for publication in MNRA

    Unbiased clustering estimates with the DESI fibre assignment

    Get PDF
    The Emission Line Galaxy survey made by the Dark Energy Spectroscopic Instrument (DESI) survey will be created from five passes of the instrument on the sky. On each pass, the constrained mobility of the ends of the fibres in the DESI focal plane means that the angular-distribution of targets that can be observed is limited. Thus, the clustering of samples constructed using a limited number of passes will be strongly affected by missing targets. In two recent papers, we showed how the effect of missing galaxies can be corrected when calculating the correlation function using a weighting scheme for pairs. Using mock galaxy catalogues we now show that this method provides an unbiased estimator of the true correlation function for the DESI survey after any number of passes. We use multiple mocks to determine the expected errors given one to four passes, compared to an idealised survey observing an equivalent number of randomly selected targets. On BAO scales, we find that the error is a factor 2 worse after one pass, but that after three or more passes, the errors are very similar. Thus we find that the fibre assignment strategy enforced by the design of DESI will not affect the cosmological measurements to be made by the survey, and can be removed as a potential risk for this experiment.Comment: 11 pages, 8 figure

    Filaments in observed and mock galaxy catalogues

    Get PDF
    Context. The main feature of the spatial large-scale galaxy distribution is an intricate network of galaxy filaments. Although many attempts have been made to quantify this network, there is no unique and satisfactory recipe for that yet. Aims. The present paper compares the filaments in the real data and in the numerical models, to see if our best models reproduce statistically the filamentary network of galaxies. Methods. We apply an object point process with interactions (the Bisous process) to trace and describe the filamentary network both in the observed samples (the 2dFGRS catalogue) and in the numerical models that have been prepared to mimic the data.We compare the networks. Results. We find that the properties of filaments in numerical models (mock samples) have a large variance. A few mock samples display filaments that resemble the observed filaments, but usually the model filaments are much shorter and do not form an extended network. Conclusions. We conclude that although we can build numerical models that are similar to observations in many respects, they may fail yet to explain the filamentary structure seen in the data. The Bisous-built filaments are a good test for such a structure.Comment: 13 pages, accepted for publication in Astronomy and Astrophysic

    A Dynamical Classification of the Cosmic Web

    Full text link
    A dynamical classification of the cosmic web is proposed. The large scale environment is classified into four web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor, i.e. the Hessian of the gravitational potential, on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, lambda_th at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighboring grid points, friends-of-friends, of the same web attribute constitutes voids, sheets, filaments and knots as web objects. A simple dynamical consideration suggests that lambda_th should be approximately unity, upon an appropriate scaling of the deformation tensor. The algorithm has been applied and tested against a suite of (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on lambda_th and on the resolution has been calculated for the four web types. Also, the percolation properties of voids and filaments have been studied. Our main findings are: (a) Already at lambda_th = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (b) Between 0.2 < lambda_th < 0.4, a system of percolated voids coexists with a net of interconected filaments. This suggests a reasonable choice for lambda_th as the parameter that defines the cosmic web. (c) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular the semi-analytical ones.Comment: 11 pages, 6 figures, submitted to MNRA
    • 

    corecore